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Euclid’s Elements

Euclid’s Common Notions
1. Things which equal the same thing also equal one another.

2. If equals are added to equals, then the wholes are equal.

3. If equals are subtracted from equals, then the remainders are
equal.

4. Things which coincide with one another equal one another.

5. The whole is greater than the part.
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Euclid’s Elements

Euclid’s Postulates
1. To draw a straight line from any point to any point.

2. To produce a finite straight line continuously in a straight line.

3. To describe a circle with any center and radius.

4. That all right angles equal one another.

5. That, if a straight line falling on two straight lines makes the
interior angles on the same side less than two right angles, the
two straight lines, if produced indefinitely, meet on that side on
which are the angles less than the two right angles.
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Euclid’s Elements

Euclid’s Propositions
The 48 propositions are accompanied by a proof using the
common notions, postulates, and previous propositions.

The 29th proposition states:

A straight line falling on parallel straight lines makes the
alternate angles equal to one another, the exterior angle
equal to the interior and opposite angle, and the sum of
the interior angles on the same side equal to two right
angles.

The 29th proposition is the first to make use of the 5th postulate.
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The 5th Postulate

The Parallel Postulate

Playfair’s Axiom
Through a point not on a given line there passes not more than
one parallel to the line.
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Proving the 5th Postulate

Posidonius (1st Century B.C.)

Ptolemy (2nd Century A.D.)

Proclus (5th Century A.D.)

Many others...

Saccheri (1667-1733)

Proof by Contradiction
Saccheri Quadrilateral
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The Saccheri Quadrilateral

AD = BC

AD ⊥ AB

BC ⊥ AB

A

D

B

C
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Euclidean Geometry

Euclidean
Number of Parallels 1
Saccheri Angle Sum = π
Curvature of space none
Triangle Angle Sum = π
Similar Triangles some congruent
Extent of lines infinite
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Modifying the 5th Postulate

Suppose we change the 5th Postulate to read as follows:
Through a point not on a given line there passes more than one
parallel to the line.

We can model this with a negative curvature of space.
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Euclidean Model
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Modelling with a saddle
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Saddle Model Top View
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Hyperbolic Geometry

Replacement of the 5th Postulate
The summit angles of a Saccheri quadrilateral are acute.

Thm: The summit angles of a Saccheri quadrilateral are equal.
Proof: Triangles ABC and BAD are congruent by SAS. Thus,
AC = BD and ∠ADC = ∠BCD.
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A parallel with a common perpendicular

Thm: The midline of a Saccheri quadrilateral is perpendicular to
both the base and the summit.

Proof: Triangles AED and BEC are congruent by SAS. This
implies that ED = EC and triangles DEF and CEF are congruent
by SSS. Thus, ∠DFE = ∠CFE , similarly one can show
∠AEF = ∠BEF .
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Parallels with a common perpendicular

Thm: There are an infinite number of parallels with a common
perpendicular passing through any point not on the line.
Proof: Take a point L1 on h to the right of F , let
M1 = Projg (L1). Take P1 on M1L1 such that EF = M1P1. Then
EM1P1F is a Saccheri quadrilateral with summit lying on line k1

and the midline is perpendicular to g and k1. Thus, k1 is another
parallel with a common perpendicular that passes through F .
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Parallels without a common perpendicular

Thm: For a given line, g , and a point, F , not on that line there
exist 2 lines which are parallel to g and pass through F without a
common perpendicular.

Proof: Consider the set of all lines subdividing the right angle
formed by the intersection of EF and h. Then any of these lines
either intersects g or is parallel to g . Let I be the set of lines that
intersect g and P be the set of lines that are parallel to g .
Consider the line, k , that forms the boundary between these two
sets. (ie. every line in I precedes k , and k precedes every line in
P) Suppose k ∈ I , then k intersects g at some point, A. If we
take a point, B, to the right of A, then k precedes the line passing
through F and B. This cannot be, since every line in I precedes
k . Thus, k ∈ P. Now k cannot be parallel with a common
perpendicular since none of these lines make a smallest angle with
EF .
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Parallels without a common perpendicular

gE

F h

These lines are called boundary parallels, and the angle α is called
the angle of parallelism for F and g .
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Right Triangles

Thm: Right triangles have angle sums < 180◦.

Pf: Consider a right triangle ABC , with a right angle at A. Let h
be the line that passes through C so as to make ∠1 = ∠2. Then
g and h are parallel with a common perpendicular that bisects
BC . Clearly, ∠1 + ∠3 = ∠2 + ∠3 < 90◦ since the angle that AC
makes with h is acute.
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Triangles

Any triangle can be decomposed into two right triangles both of
which have angle sum less than 180◦.

Therefore, any triangle has angle sum less than 180◦.

The difference between the angle measure of a triangle and 180◦

is called the defect of the triangle. Smaller triangles have smaller
defects and larger triangles have larger defects.

The area of a triangle is proportional to its defect. (ie. A = kD,
where k is some positive constant and D is the defect of the
triangle)
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Trilaterals

A trilateral is a three sided figure consisting of two boundary
parallels and a transversal that cuts them both.

A trilateral has angle sum less than 180◦ as well since at least one
angle is acute.
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Hyperbolic vs. Euclidean Geometry

Euclidean Hyperbolic
Number of Parallels 1 ∞
Saccheri Angle Sum = π < π
Curvature of space none negative
Triangle Angle Sum = π < π
Similar Triangles some congruent all congruent
Extent of lines infinite infinite
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Modifying the 5th Postulate

Suppose we change the 5th Postulate to read as follows:
All lines intersect and thus, there are no lines which are parallel.

We can model this with a positive curvature of space.
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Elliptic Geometry

Replacement of the 5th Postulate
The summit angles of a Saccheri quadrilateral are obtuse.
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Modeling with a sphere

The most familiar model for Elliptic Geometry is the sphere,
technically this is the model for Double Elliptic Geometry.
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Double Elliptic Geometry

All lines are great circles, and thus all lines have the same length.
We will assume the sphere has a radius of k so the length of any
line is 2πk .

Consequently, there is a maximum distance that any two points
can be apart. Namely, half of the length of a line or πk .

Any two lines meet in two points.

Through each pair of nonpolar points, there passes exactly one
line.

Through each pair of polar points, there pass infinitely many lines.

Nate Black An Introduction to Non-Euclidean Geometry



Elliptic Geometry :: Double Elliptic Geometry 25 / 33

Double Elliptic Geometry

All lines are great circles, and thus all lines have the same length.
We will assume the sphere has a radius of k so the length of any
line is 2πk .

Consequently, there is a maximum distance that any two points
can be apart. Namely, half of the length of a line or πk .

Any two lines meet in two points.

Through each pair of nonpolar points, there passes exactly one
line.

Through each pair of polar points, there pass infinitely many lines.

Nate Black An Introduction to Non-Euclidean Geometry



Elliptic Geometry :: Double Elliptic Geometry 25 / 33

Double Elliptic Geometry

All lines are great circles, and thus all lines have the same length.
We will assume the sphere has a radius of k so the length of any
line is 2πk .

Consequently, there is a maximum distance that any two points
can be apart. Namely, half of the length of a line or πk .

Any two lines meet in two points.

Through each pair of nonpolar points, there passes exactly one
line.

Through each pair of polar points, there pass infinitely many lines.

Nate Black An Introduction to Non-Euclidean Geometry



Elliptic Geometry :: Double Elliptic Geometry 25 / 33

Double Elliptic Geometry

All lines are great circles, and thus all lines have the same length.
We will assume the sphere has a radius of k so the length of any
line is 2πk .

Consequently, there is a maximum distance that any two points
can be apart. Namely, half of the length of a line or πk .

Any two lines meet in two points.

Through each pair of nonpolar points, there passes exactly one
line.

Through each pair of polar points, there pass infinitely many lines.

Nate Black An Introduction to Non-Euclidean Geometry



Elliptic Geometry :: Double Elliptic Geometry 25 / 33

Double Elliptic Geometry

All lines are great circles, and thus all lines have the same length.
We will assume the sphere has a radius of k so the length of any
line is 2πk .

Consequently, there is a maximum distance that any two points
can be apart. Namely, half of the length of a line or πk .

Any two lines meet in two points.

Through each pair of nonpolar points, there passes exactly one
line.

Through each pair of polar points, there pass infinitely many lines.

Nate Black An Introduction to Non-Euclidean Geometry



Elliptic Geometry :: Double Elliptic Geometry 26 / 33

Spherical Lines
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Right Triangles

Thm: In a right triangle, the other angles are acute, right, or
obtuse as the side opposite the angle is less than, equal to, or
greater than πk

2 . The converse is also true.

Proof: By diagram
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Angle sum of Triangles

Right triangles with another right angle or an obtuse angle clearly
have an angle sum greater than 180◦.

Right triangles with only one acute angle have a third angle that
is either right or obtuse, so these triangles have an angle sum
greater than 180◦.

It can be shown that a right triangle with 2 acute angles has an
angle sum greater than 180◦.

Since any triangle can be decomposed into 2 right triangles, we
conclude that all triangles have angle sum greater than 180◦.
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Modelling with a modified hemisphere

The model for Single Elliptic Geometry is the modified
hemisphere.
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Single Elliptic Geometry

All lines are great circles and have the same length. Since we are
working with half a sphere this will be πk.

Consequently, there is a maximum distance that any two points

can be apart, namely
πk

2
.

Any two lines meet in one point.
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Triangles

We can get some odd looking triangles though.
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Non-Euclidean vs. Euclidean Geometry

Euclidean Hyperbolic Elliptic
Number of Parallels 1 ∞ 0
Saccheri Angle Sum = π < π > π
Curvature of space none negative positive
Triangle Angle Sum = π < π > π
Similar Triangles some congruent all congruent all congruent
Extent of lines infinite infinite finite
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