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Background

Cryptography Model

Eve

BobAlice
m D(E(m))=m

E(m)

E(m)
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Background

Secret Key Cryptography

Alice and Bob share the same key.

Advantage: These methods are very secure.

Disadvantage: Alice and Bob must have agreed on the key
ahead of time.
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Background

Public Key Cryptography

Alice and Bob have different keys.

Bob publishes a Public Key which Alice uses to send Bob
messages.

Bob uses a Private Key to decode messages sent to him.

Advantage: These methods provide secure communication
without shared knowledge prior to communication.

Disadvantage: Slight increase in overhead and computational
complexity over secret key methods.
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Background

Cryptography Model Revisited

Eve

BobAlice
m D(E(m))=m

E(m)

E(m)
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Background

Active Attacks

Chosen plaintext:
Eve chooses several plaintexts and receives the corresponding
ciphertexts.

Chosen ciphertext:
Eve chooses several ciphertexts and receives the corresponding
plaintexts.
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Background

Cryptographic Primitives
Integer Factorization (RSA)
Factor a number into a product of primes: n = p1p2 . . . pk .

Discrete Log Problem (ElGamal)
Let a and b be elements of a finite field F, then find x ∈ F such
that ax = b.

Solving systems of polynomial equations

The lattice problem

The decoding problem from Coding Theory
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Definition

Linear Codes
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Definition

It is an error correcting code.

The vectors in the code are called codewords.

The codewords form a linear subspace.
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Definition

Definition (Linear Code)

An [n, k, d ] linear code, C , is a k dimensional subspace of Fn where F
is a field, and d is the minimum distance of the code. The elements
u ∈ C are called codewords.

Definition (Minimum Distance)

Let H(u, v) be the Hamming distance between two codewords, where
the Hamming distance between u and v is the number of positions in
which u and v differ. Then the minimum distance, d , of a code, C , is
given by d = min ({H(u, v) | u 6= v and u, v ∈ C}).
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Definition

Encoding:
Given u ∈ Fk produce the corresponding codeword, v = uG .

Decoding:
Given w ∈ Fn find the closest codeword, c ∈ C .
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The Generator Matrix

Let {c1, c2, . . . ck} be a basis for C , the k dimensional subspace of Fn,
where

ci = (ci ,1, ci ,2, . . . , ci ,n)

is an n-vector. Then define the k × n matrix G as follows:

G =


c1

c2
...

ck

 =


c1,1 c1,2 . . . c1,n

c2,1 c2,2 . . . c2,n
...

...
. . .

...
ck,1 ck,2 . . . ck,n

 .
This matrix is called the generating matrix for C since
C =

{
vG | v ∈ Fk

}
(i.e. all F-linear combinations of the rows of G ).

Nate Black Cryptography Via Linear Codes



Linear Codes :: Definition 14 / 46

The Parity Check Matrix

Another related matrix which can be used to define the code C is the
(n − k)× n matrix H of rank n − k called the parity check matrix.
This matrix is the solution to the following matrix equation:

GHT = 0k×(n−k).
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The Parity Check Matrix

Note that since every codeword, v, can be written as uG = v this
implies that

vHT = uGHT = u0k×(n−k) = 01×(n−k).

Also, since the rank of H is n − k and {c1, c2, . . . ck} ⊆ C is a linearly
independent set of size k with ciH

T = 01×(n−k) we conclude that C is

precisely the left null space of HT and thus we have the following
useful property:

vHT = 01×(n−k) iff v ∈ C .
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Practical Applications

ISBN codes

CDs

Space probe photographs

RAID arrays
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Reed-Solomon Codes

Let F be a field of size q, and 1 ≤ k ≤ n ≤ q

A = {α1, α2, . . . αn} ⊆ F with αi 6= αj is called the evaluation set

Z = (z1, z2, . . . , zn) with zi 6= 0 ∈ F are called the scaling
coefficients

Codewords: ci =
(
z1α

i−1
1 , z2α

i−1
2 , . . . , znα

i−1
n

)
Minimum distance: n − k + 1
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Reed-Solomon Codes

The Generator Matrix:

G = G1Z

G =


1 1 . . . 1
α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αk−1
1 αk−1

2 . . . αk−1
n




z1 0 . . . 0
0 z2 . . . 0
0 0 . . . 0
...

...
. . .

...
0 0 . . . zn


det(Z ) 6= 0 since zi 6= 0.

G1 is a Vandermonde matrix.

If k = n, then det(G1) =
∏

1≤i<j≤n

(αj − αi ) 6= 0 since αi 6= αj .
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Reed-Solomon Codes

(u0, u1, . . . , uk−1) ·


z1 z2 . . . zn

z1α1 z2α2 . . . znαn

z1α
2
1 z2α

2
2 . . . znα

2
n

...
...

. . .
...

z1α
k−1
1 z2α

k−1
2 . . . znα

k−1
n



=

(
z1

k−1∑
i=0

uiα
i
1, z2

k−1∑
i=0

uiα
i
2, . . . , zn

k−1∑
i=0

uiα
i
n

)

= (z1u(α1), z2u(α2), . . . , znu(αn))
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Reed-Solomon Codes

Thus all the codewords in a Reed-Solomon code are simply the
n-tuples of the form

(z1f (α1), z2f (α2), . . . , znf (αn))

obtained by evaluating over all

f ∈ F[x ] with deg(f ) < k .
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Decoding

Decoding Linear Codes
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Unambiguous Decoding

Definition (Unambiguous Decoding)

For an [n, k, d ] code and input w ∈ Fn, find the codeword, if it exists,

within the ball of radius r =

⌊
d − 1

2

⌋
centered around w.

r =
d-1
2
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List Decoding

Definition (List Decoding)

For an [n, k , d ] code and input w ∈ Fn, find all codewords, if any exist,

within the ball of radius r >

⌊
d − 1

2

⌋
centered around w.

r >
d-1
2
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Maximum Likelihood Decoding

Definition (Maximum Likelihood Decoding)

For an [n, k, d ] code and input w ∈ Fn, find the closest codeword to w
with respect to the Hamming distance.

r1 r2
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Decoding

Why Maximum Likelihood Decoding?

vector components distance

Received vector: [1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1]
Codeword 1: [1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 1] 3
Codeword 2: [1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 0, 0] 4
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Reed-Solomon Decoding Problem

Definition (Reed-Solomon Decoding Problem)

Given n points: α1, α2, . . . αn in a finite field, F, and a vector
u = (u1, u2, . . . , un) ∈ Fn find g ∈ F[x ] with deg(g) < k such that
for v = (f (α1), f (α2), . . . , f (αn)), H(u, v) ≤ H(u,w) ∀ w ∈ C with
w 6= u,w 6= v.

Maximum Likelihood Decoding of Reed-Solomon codes has been
shown to be NP-hard, which means that these problems are excellent
candidates for use in constructing cryptosystems.
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Polynomial Reconstruction Problem

Definition (Polynomial Reconstruction Problem)

Let F be a finite field, and let n, k , and t be given design parameters.
For a given set of n ordered pairs, {(x1, y1), (x2, y2), . . . (xn, yn)} ⊆ F2

find all f ∈ F[x ] with deg(f ) < k such that f (xi ) = yi for at least t
indices, where 1 ≤ t ≤ n. Oftentimes, a PR problem is represented as
a 6-tuple: (n, k , t, x, y,F), where x = (x1, x2, . . . , xn) and
y = (y1, y2, . . . , yn).

This problem is exactly the same as list decoding for a Reed-Solomon
code.
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Applications

Cryptosystems and an Application
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McEliece Cryptosystem

A Binary Goppa code is used for the underlying security of this
cryptosystem.

Private Key:
1 G , a k × n generator matrix for an [n, k , d ] Goppa code, C
2 S , a nonsingular random k × k matrix sometimes known as a

scrambler
3 P, an n × n permutation matrix

Public Key:
1 The product of the private key matrices, K = SGP
2 The number of errors, t, that C can correct
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McEliece Cryptosystem

Encryption:
1 Input: a message m = (m1, m2, . . . , mk)
2 Compute

c = mK + e = mSGP + e,

where e is a random n-vector with H(e, 0) ≤ t.

Decryption:
1 Input: a received vector, c = (c1, c2, . . . , cn)
2 Compute

cP−1 = mSG + eP−1.

3 Now mSG is a codeword in C , and eP−1 has H(eP−1, 0) ≤ t so
that by applying the decoding algorithm for C to cP−1 we obtain

mS .

4 This allows us to multiply by S−1 on the right and obtain m.
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McEliece Cryptosystem

Secure against known attacks.

Dan Bernstein and some others recently broke the code with the
original parameters using a cluster of 200 computers for a couple
of weeks. However, their attack fails when the parameters are
increased.

The best known general attack uses a technique called
information set decoding.
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Information Set Decoding

An information set, I = {i1, i2, . . . ik}, is a size k subset of the
indices of the columns from the k × n public key matrix, K , such
that the reduced k × k matrix KI formed from the columns
specified in the information set is invertible.

Similarly, for a vector v = (v1, v2, . . . , vn), let
vI = (vi1 , vi2 , . . . , vik ) be the reduced version of v formed by the
entries in v having indices in I .
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Information Set Decoding Algorithm

Given a received vector c = mK + e perform the following steps:

1 Approximate m by u = cIK
−1
I

2 Calculate the codeword v = uK

3 If H(v− c) ≤ t then m = u otherwise choose another information
set and run the algorithm again

Note that vI = (mK)I if and only if the indices in I were not corrupted
by errors in the encryption process. To break the McEliece system the
attacker runs this algorithm on all information subsets until m is
found. In practice the attacker will not know which information sets do
not contain errors so he will try all possible information sets.
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Niederreiter Cryptosystem

This cryptosystem is a modification of the McEliece system and as
originally proposed, used a GRS code for security.

Private Key:
1 H, an r × n parity check matrix for a GRS code, C
2 S , a nonsingular random r × r matrix sometimes known as a

scrambler

Public Key:
1 The product of the private key matrices, K = SH
2 r
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Niederreiter Cryptosystem

Encryption:
1 Input: a message m = (m1, m2, . . . , mn)
2 Compute

c = mKT = mHTST,

Note that m should have H(m, 0) < b n−((n−r)−1)
2 c = b r+1

2 c,
otherwise there will be too many errors to uniquely recover the
plaintext, m, from the ciphertext c.

Decryption:
1 Input: a received vector, c = (c1, c2, . . . , cr )
2 Compute

w = c(ST)−1 = mHT.

3 Then, using the efficient decoding algorithm for C , recover m.
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Sidelnikov-Shestakov attack

The goal of the attack is to factor K into the product of two
trapdoor matrices Htr and Str such that K = SH = HtrStr .

Htr and H should both be parity check matrices for the same GRS
code, and Str should be an invertible n × n matrix.

If K can be decomposed into such a product then the
cryptosystem is broken since we can perform the following steps
to recover m from a recieved vector c :

c = mKT

c = mST
trH

T
tr

Use the decoding algorithm to recover mST
tr .

Then multiply by (ST
tr )−1 on the right to obtain m.
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PR Based Stateful Cipher

The cipher is said to be a block cipher since the plaintext message
is broken up into blocks to be encrypted.

It is a stateful cipher since the encryption of each block depends
on the current state of the encryption algorithm.

It exhibits forward security, since the blocks are encrypted one
after another in a chain, so that if one of the blocks in the chain
is decrypted then the security fails for all remaining blocks, but
the previous blocks remain secure.

It can be implemented as a secret key cryptosystem.
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PR Based Stateful Cipher

r1 r2

Decryption

Encryption s0

m0

m0

s0

s1

s1

s1

m1

m1

s1

s2

s2

sk

mk

mk

c0 c1 ck

sk
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Setup

An instance of the PR problem, (n, k , t, z, y,F), having zi 6= 0 ∀ i
and zi 6= zj ∀ i 6= j

K = {s ∈ Fn
2 | H(s, 0) = t}, that is the set of all n-bit strings

having exactly t ones in their representation

Is denotes the size t subset of {1, 2, . . . n} corresponding to the
indices of s ∈ K that are ones

bs is the integer with binary representation s

Pick a random s0 ∈ K as the initial state (i.e. the secret key)
which is known by both the sender and the receiver

Nate Black Cryptography Via Linear Codes



Applications :: PR Based Stateful Cipher 40 / 46

Encryption

Input: A state, s ∈ K , and a message block, m ∈ F
k−1

2

1 Generate the next state by picking a random s ′ ∈ K .
2 Define a polynomial p(x) ∈ F[x ] with deg(p) < k by interpolating

the following k points where ri are random elements of F.
(0, bs′)

(zi ,mi ) i = 1, 2, . . .
k − 1

2

(zi , ri ) i =
k − 1

2
+ 1,

k − 1

2
+ 2, . . . k − 1


3 Generate an error vector, e as follows:

ej = 0 ∀ j ∈ Is ej = rj ∀ j /∈ Is

where rj are random elements of F.
4 Return the encrypted vector, c ∈ Fn, given by

c = (p(z1), p(z2), . . . , p(zn)) + e.
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Decryption

Input: A state, s ∈ K , and a received encrypted block, c ∈ Fn

1 Interpolate the set of t points

{(zi , ci ) | i ∈ Is}

to obtain f (x) with deg(f ) < k. Note that none of these points
were corrupted by the error vector since ei = 0 ∀ i ∈ Is .

2 Update the state of the algorithm to f (0).

3 Return the recovered message, m ∈ F
k−1

2 , given by

m =
(
f (z1), f (z2), . . . , f

(
z k−1

2

))
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PR Based Biometric Authentication

Definition (PR Problem Variation)

Let F be a finite field and m be a design parameter. For a given set of
m 4-tuples, {(x1, y1, x̄1, ȳ1), (x2, y2, x̄2, ȳ2), . . . (xm, ym, x̄m, ȳm)} ⊆ F4

with x1, x2, . . . xm, x̄1, x̄2, . . . x̄m nonzero and distinct find a polynomial
f ∈ F[x ] with deg(f (x)) < m such that for each 1 ≤ i ≤ m, f (xi ) = yi

or f (x̄i ) = ȳi .
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Setup

Let v ∈ F be the value that is to be secured.

Select m of the users features to measure when authenticating,
and let ti be the average value among the user population for the
ith chosen feature.

Define gi : N→ R, where gi (n) = rn represents the measured
value, rn, for the feature, i , on the nth successful authentication.
For example, if the measurement of the fourth feature on the
eighth successful authentication attempt was 0.2, then
g4(8) = 0.2.

A feature of a user is said to be distinguishing to the left (right) if
the average value of the last h authentication attempts is
statistically significant to the left (right) of the population
average, ti .
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Calibration

1 Take h measurements of each of the users m features.

2 Choose a random polynomial p ∈ F[x ] with deg(p) < m such that
p(0) = v .

3 Create a PR instance with the following set of tuples:
(xi , p(xi ), x̄i , ri ) if the ith feature is distinguishing to the left
(xi , ri , x̄i , p(x̄i )) if the ith feature is distinguishing to the right
(xi , p(xi ), x̄i , p(x̄i )) otherwise

 ,

where ri is a random element of F. This PR instance is then
stored for use in the next authentication attempt.
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Authentication

1 Let {(x1, y1, x̄1, ȳ1), (x2, y2, x̄2, ȳ2), . . . (xm, ym, x̄m, ȳm)} be the
tuples in the PR instance.

2 Measure the users m features to generate the following set of
ordered pairs:

(xi , yi ) if the ith feature is distinguishing to the left
(x̄i , ȳi ) if the ith feature is distinguishing to the right
(xi , yi ), (x̄i , ȳi ) otherwise


3 Interpolating these ordered pairs should produce the original

function p(x), even if some of the features were measured with
slight deviations (i.e. some of the wrong ordered pairs were
included from the tuples in the PR instance).

4 If the user is successful in authenticating, then perform the
calibration step again, using the average value of the last h
successful authentication attempts for each feature.
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Conclusion

Thank you for attending.
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