Gröbner Basis Structure and the GWW Algorithm Nate Black

Clemson University
MthSc 985 Symbolic Computation Project December 11, 2009

Part I: Gröbner Basis Structure

Gröbner Basis Structure of Finite Sets of Points

Definitions

- def. Let I be an ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, then the variety associated with \mathbf{I} is the set of common zeros for the polynomials in \mathbf{I}.

$$
V(\mathbf{I})=\left\{P \in \overline{\mathbb{F}}^{n}: f(P)=0, \forall f \in \mathbf{I}\right\}
$$

- def. An ideal I is a zero-dimensional ideal if the associated variety $V(\mathrm{I})$ is a finite set.
- def. The radical of an ideal $I \subseteq R$ is the set
$\operatorname{Rad}(\mathbf{I})=\left\{r \in R: r^{n} \in \mathbf{I}\right.$ for some positive integer $\left.n\right\}$

Definitions

- def. Let \mathbf{I} be an ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, then the variety associated with \mathbf{I} is the set of common zeros for the polynomials in \mathbf{I}.

$$
V(\mathbf{I})=\left\{P \in \overline{\mathbb{F}}^{n}: f(P)=0, \forall f \in \mathbf{I}\right\}
$$

- def. An ideal I is a zero-dimensional ideal if the associated variety $V(\mathbf{I})$ is a finite set.
- def. The radical of an ideal $I \subseteq R$ is the set

Definitions

- def. Let I be an ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, then the variety associated with \mathbf{I} is the set of common zeros for the polynomials in \mathbf{I}.

$$
V(\mathbf{I})=\left\{P \in \overline{\mathbb{F}}^{n}: f(P)=0, \forall f \in \mathbf{I}\right\}
$$

- def. An ideal I is a zero-dimensional ideal if the associated variety $V(\mathbf{I})$ is a finite set.
- def. The radical of an ideal $\mathbf{I} \subseteq R$ is the set

$$
\operatorname{Rad}(\mathbf{I})=\left\{r \in R: r^{n} \in \mathbf{I} \text { for some positive integer } n\right\}
$$

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

- Let \mathcal{P} be the set of common zeros of \mathbf{I}. (i.e. $\mathcal{P}=V(\mathbf{I})$)

- Let $\mathcal{S}=\pi(\mathcal{P})$ denote the projection of \mathcal{P}
- def. The fibre of π in \mathcal{P} at a point $s \in \mathcal{S}$ is $\pi^{-1}(s)$, the set of points in \mathcal{P} that project to s. This set is called the fibre of s.
- def. The size of a fibre is its cardinality, and the fibre size of s is the size of its fibre.

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

- Let \mathcal{P} be the set of common zeros of \mathbf{I}. (i.e. $\mathcal{P}=V(\mathbf{I})$)
- Let $\pi: \overline{\mathbb{F}}^{n} \rightarrow \overline{\mathbb{F}}^{n-1}$ be the projection map such that

$$
\pi\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\left(a_{1}, \ldots, a_{n-1}\right)
$$

- Let $\mathcal{S}=\pi(\mathcal{P})$ denote the projection of \mathcal{P}.
- def. The fibre of π in \mathcal{P} at a point $s \in \mathcal{S}$ is $\pi^{-1}(s)$, the set of points in \mathcal{P} that project to s. This set is called the fibre of s. - def. The size of a fibre is its cardinality, and the fibre size of s is the size of its fibre.

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

- Let \mathcal{P} be the set of common zeros of \mathbf{I}. (i.e. $\mathcal{P}=V(\mathbf{I})$)
- Let $\pi: \overline{\mathbb{F}}^{n} \rightarrow \overline{\mathbb{F}}^{n-1}$ be the projection map such that

$$
\pi\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\left(a_{1}, \ldots, a_{n-1}\right)
$$

- Let $\mathcal{S}=\pi(\mathcal{P})$ denote the projection of \mathcal{P}.
points in \mathcal{P} that project to s. This set is called the fibre of s.
- def. The size of a fibre is its cardinality, and the fibre size of s is the size of its fibre.

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

- Let \mathcal{P} be the set of common zeros of \mathbf{I}. (i.e. $\mathcal{P}=V(\mathbf{I})$)
- Let $\pi: \overline{\mathbb{F}}^{n} \rightarrow \overline{\mathbb{F}}^{n-1}$ be the projection map such that

$$
\pi\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\left(a_{1}, \ldots, a_{n-1}\right)
$$

- Let $\mathcal{S}=\pi(\mathcal{P})$ denote the projection of \mathcal{P}.
- def. The fibre of π in \mathcal{P} at a point $s \in \mathcal{S}$ is $\pi^{-1}(s)$, the set of points in \mathcal{P} that project to s. This set is called the fibre of s.
- def. The size of a fibre is its cardinality, and the fibre size of s is the size of its fibre.

Definitions

Big Idea: If the Gröbner Basis for an ideal I has some "nice" structure to it, then we can uncover information about $V(\mathbf{I})$ and vice versa.
The structure that we seek is the ability to project down a dimension on one of the coordinates.

- Let \mathcal{P} be the set of common zeros of \mathbf{I}. (i.e. $\mathcal{P}=V(\mathbf{I})$)
- Let $\pi: \overline{\mathbb{F}}^{n} \rightarrow \overline{\mathbb{F}}^{n-1}$ be the projection map such that

$$
\pi\left(a_{1}, \ldots, a_{n-1}, a_{n}\right)=\left(a_{1}, \ldots, a_{n-1}\right)
$$

- Let $\mathcal{S}=\pi(\mathcal{P})$ denote the projection of \mathcal{P}.
- def. The fibre of π in \mathcal{P} at a point $s \in \mathcal{S}$ is $\pi^{-1}(s)$, the set of points in \mathcal{P} that project to s. This set is called the fibre of s.
- def. The size of a fibre is its cardinality, and the fibre size of s is the size of its fibre.

Pictures

Pictures

Pictures

How does the special structure help?

- Does a Gröbner Basis for \mathbf{I} tell the sizes of the fibres in \mathcal{P} ?
- If I know a Gröbner Basis for I, can I easily find a Gröbner Basis for subsets of \mathcal{S} that are projections of different fibre sizes?

How does the special structure help?

- Does a Gröbner Basis for \mathbf{I} tell the sizes of the fibres in \mathcal{P} ?
- If I know a Gröbner Basis for I, can I easily find a Gröbner Basis for subsets of \mathcal{S} that are projections of different fibre sizes?

Main Theorem

Let \mathbb{F} be a perfect field, I be a zero-dimensional radical ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and \mathcal{P} be the set of zeros of \mathbf{I} in $\overline{\mathbb{F}}^{n}$. Assume the fibre sizes in \mathcal{P} are $m_{1}>\ldots>m_{r}>0$. Let G be any minimal Gröbner Basis for \mathbf{I} under an elimination order for x_{n}. View the elements of G as polynomials in x_{n} with coefficients in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$. Then the following statements will hold:

Main Theorem

Let \mathbb{F} be a perfect field, I be a zero-dimensional radical ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and \mathcal{P} be the set of zeros of \mathbf{I} in $\overline{\mathbb{F}}^{n}$. Assume the fibre sizes in \mathcal{P} are $m_{1}>\ldots>m_{r}>0$. Let G be any minimal Gröbner Basis for I under an elimination order for x_{n}. View the elements of G as polynomials in x_{n} with coefficients in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$. Then the following statements will hold:

- The x_{n}-degrees of the polynomials in G are exactly the fibre sizes in \mathcal{P}.

Main Theorem

Let \mathbb{F} be a perfect field, I be a zero-dimensional radical ideal in $\mathbb{F}\left[x_{1}, \ldots, x_{n}\right]$, and \mathcal{P} be the set of zeros of \mathbf{I} in $\overline{\mathbb{F}}^{n}$. Assume the fibre sizes in \mathcal{P} are $m_{1}>\ldots>m_{r}>0$. Let G be any minimal Gröbner Basis for I under an elimination order for x_{n}. View the elements of G as polynomials in x_{n} with coefficients in $\mathbb{F}\left[x_{1}, \ldots, x_{n-1}\right]$. Then the following statements will hold:

- The x_{n}-degrees of the polynomials in G are exactly the fibre sizes in \mathcal{P}.
- For $1 \leq i \leq r$ let G_{i} denote the set of leading coefficients of the polynomials in G whose x_{n}-degrees are $<m_{i}$. Also, let $\mathcal{S}_{\leq i}$ denote the set of points in $\mathcal{S}=\pi(\mathcal{P})$ that are projections of fibres of size $\geq m_{i}$. Then each G_{i} is a Gröbner Basis for $\mathcal{S}_{\leq i}$.

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$.
- We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate
\square
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$
- We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate
\square
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$.
- We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$.
- We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$ - We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$.

Example

- Let $G=\left\{z^{2}-z, z y-z, x, y^{2}-y\right\}$ be a Gröbner Basis
- Note that the z-degrees of each polynomial are $2,1,0,0$ respectively
- Thus if we project on the z-coordinate, the fibre sizes will be $2>1>0$
- Looking at the first element in G we see that $z^{2}-z=0$ has only two solutions: $z=0,1$
- First, let $z=0$ and project on the z-coordinate $G_{1}=\left\{x, y^{2}-y\right\}$
- Second, let $z=1$ and project on the z-coordinate $G_{2}=\left\{y-1, x, y^{2}-y\right\}$
- In either case $x=0$, then for $G_{1}, y^{2}-y=0$ has two solutions: $y=0,1$, while for $G_{2}, y-1=0$ forces $y=1$.
- We now have 3 solutions: $\{(0,0,0),(0,1,0),(0,1,1)\}$

Pictures

Pictures

Part II: The GWW Algorithm

Primary Decomposition of Zero-Dimensional Ideals Over Finite Fields

Definitions

- def. An ideal $\mathbf{I} \subseteq R$ is called primary if whenever $x y \in \mathbf{I}$ then either x or y^{n} is in \mathbf{I} for some positive integer n.
- def. The nth-Frobenius map sends every element x to x^{n}. For finite fields of order q the qth-Frobenius map fixes every element in the field.
- def. A primary decomposition of an ideal, I, is a set of ideals, $\left\{Q_{i}\right\}$, such that each Q_{i} is primary and

In general this decomposition is not unique, but the number of elements, r, is.

Definitions

- def. An ideal $\mathbf{I} \subseteq R$ is called primary if whenever $x y \in \mathbf{I}$ then either x or y^{n} is in \mathbf{I} for some positive integer n.
- def. The nth-Frobenius map sends every element x to x^{n}. For finite fields of order q the qth-Frobenius map fixes every element in the field.
- def. A primary decomposition of an ideal, I, is a set of ideals, $\left\{Q_{i}\right\}$, such that each Q_{i} is primary and

In general this decomposition is not unique, but the number of elements, r, is.

Definitions

- def. An ideal $\mathbf{I} \subseteq R$ is called primary if whenever $x y \in \mathbf{I}$ then either x or y^{n} is in \mathbf{I} for some positive integer n.
- def. The nth-Frobenius map sends every element x to x^{n}. For finite fields of order q the qth-Frobenius map fixes every element in the field.
- def. A primary decomposition of an ideal, \mathbf{I}, is a set of ideals, $\left\{Q_{i}\right\}$, such that each Q_{i} is primary and

$$
\mathbf{I}=Q_{1} \cap Q_{2} \cap \ldots \cap Q_{r}
$$

In general this decomposition is not unique, but the number of elements, r, is.

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / I$ and $\left.G=\left\{g \in R: g \equiv g^{q}(\bmod)\right)\right\}$
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}
- Let C be the matrix that represents the qth-Frobenius map acting on B. Then $B^{q}=B \cdot C$.
- If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{T}$, then $g^{q} \equiv g(\bmod I)$ iff

$$
(C-l)\left(a_{1}, \ldots, a_{d}\right)^{\top}=0
$$

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}$ and $G=\left\{g \in R: g \equiv g^{q}(\bmod \mathbf{I})\right\}$.
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}
- Let C be the matrix that represents the qth-Frobenius map acting on B. Then $B^{q}=B \cdot C$.
- If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{\top}$, then $g^{q} \equiv g(\operatorname{modl})$ iff

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}$ and $G=\left\{g \in R: g \equiv g^{q}(\bmod \mathbf{I})\right\}$.
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}
- Let C be the matrix that represents the qth-Frobenius map acting on B. Then $B^{q}=B \cdot C$.
- If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{T}$, then $g^{q} \equiv g(\bmod I)$ iff

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}$ and $G=\left\{g \in R: g \equiv g^{q}(\bmod \mathbf{I})\right\}$.
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}.
- Let C be the matrix that represents the qth-Frobenius map acting - If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{T}$, then $g^{q} \equiv g(\bmod \mathbf{I})$ iff

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}$ and $G=\left\{g \in R: g \equiv g^{q}(\bmod \mathbf{I})\right\}$.
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}.
- Let C be the matrix that represents the qth-Frobenius map acting on B. Then $B^{q}=B \cdot C$.

- If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{\top}$, then $g^{q} \equiv g(\bmod I)$ iff

Outline

- Let $\mathbf{I} \subseteq k\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be the ideal under consideration with k containing \mathbb{F}_{q} as a subfield.
- Let $R=k\left[x_{1}, x_{2}, \ldots, x_{n}\right] / \mathbf{I}$ and $G=\left\{g \in R: g \equiv g^{q}(\bmod \mathbf{I})\right\}$.
- Then G is an \mathbb{F}_{q} linear subspace of R. (By the theorem proved in the paper, the dimension will actually be r, where r is the number of ideals in the primary decomposition.)
- Let B be any linear basis for G over \mathbb{F}_{q}.
- Let C be the matrix that represents the qth-Frobenius map acting on B. Then $B^{q}=B \cdot C$.
- If we represent $g \in R$ as $B\left(a_{1}, \ldots, a_{d}\right)^{T}$, then $g^{q} \equiv g(\bmod \mathbf{l})$ iff

$$
(C-I)\left(a_{1}, \ldots, a_{d}\right)^{T}=0
$$

Example

- Let $\mathbf{I}=\left\langle y^{2}-x z, z^{2}-x^{2} y, x+y+z-1\right\rangle \subset \mathbb{F}_{5}[x, y, z]$
- Using lex order with $x>y>z$, I has a Gröbner Basis

- $R=\mathbb{F}_{5}[x, y, z] / I$ has a basis: $B=\left(z^{4}, z^{3}, z^{2}, z, y, 1\right)$

Example

- Let $\mathbf{I}=\left\langle y^{2}-x z, z^{2}-x^{2} y, x+y+z-1\right\rangle \subset \mathbb{F}_{5}[x, y, z]$
- Using lex order with $x>y>z$, I has a Gröbner Basis $G=\left[x+y+z-1, y^{2}+3 y-2 z^{4}+z^{3}+2 z^{2}+z\right.$, $\left.y z+2 y+2 z^{4}-z^{3}-z^{2}-2 z, z^{5}-z^{4}+3 z^{3}-z^{2}+2 z\right]$

Example

- Let $\mathbf{I}=\left\langle y^{2}-x z, z^{2}-x^{2} y, x+y+z-1\right\rangle \subset \mathbb{F}_{5}[x, y, z]$
- Using lex order with $x>y>z$, I has a Gröbner Basis $G=\left[x+y+z-1, y^{2}+3 y-2 z^{4}+z^{3}+2 z^{2}+z\right.$, $\left.y z+2 y+2 z^{4}-z^{3}-z^{2}-2 z, z^{5}-z^{4}+3 z^{3}-z^{2}+2 z\right]$
- $R=\mathbb{F}_{5}[x, y, z] / I$ has a basis: $B=\left(z^{4}, z^{3}, z^{2}, z, y, 1\right)$

Example

$$
-C=\left[\begin{array}{cccccc}
-2 & -1 & 1 & 1 & 1 & 0 \\
-1 & -1 & 2 & 2 & 0 & 0 \\
2 & -1 & 2 & 1 & 0 & 0 \\
-1 & -2 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- The solution space of $C-l$ is given by:

Example

$$
\text { - } C=\left[\begin{array}{cccccc}
-2 & -1 & 1 & 1 & 1 & 0 \\
-1 & -1 & 2 & 2 & 0 & 0 \\
2 & -1 & 2 & 1 & 0 & 0 \\
-1 & -2 & 2 & -2 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

- The solution space of $C-I$ is given by:

$$
\begin{aligned}
(0,0,0,0,0,1) & \leftrightarrow g_{1}=1, \\
(0,0,-1,1,0,0) & \leftrightarrow g_{2}=z-z^{2}, \\
(0,1,1,0,0,) & \leftrightarrow g_{3}=z^{2}+z^{3}, \\
(-2,1,0,0,0,0) & \leftrightarrow g_{4}=z^{3}-2 z^{4},
\end{aligned}
$$

Example

- For g_{2} construct the ideal $\mathbf{J}=\left\langle\mathbf{I}, w-g_{2}\right\rangle \subseteq \mathbb{F}_{q}[x, y, z, w]$
- Using lex order with $x>y>z>w$, J has a Gröbner Basis $w^{4}+w^{3}+w^{2}+w,(w-2) z+2 w^{3}+w^{2}, z^{2}-z+w$, $(w+1) y+z w-z-w, y z-2 y w-2 z^{2} w-2 z^{2}+2 z w+2 z$, $y^{2}+y z+z^{2}-z, x+y+z-1$
- Note that $h=w^{4}+w^{3}+w^{2}+w$ has 4 roots: $w=0,-1,-2,2$, and the dimension of the solution space was 4 .
- Let $w=0$ then we obtain:
$G_{0}=\left\{-2 z, z^{2}-z, y-z, y z+3 z^{2}+2 z\right.$,
$\left.y^{2}+y z+z^{2}-z, x+y+z-1\right\}$
$Q_{1}=\left\langle G_{0}\right\rangle=\langle-2 z, y-z, x+y+z-1\rangle=\langle z, y, x-1\rangle$

Example

- For g_{2} construct the ideal $\mathbf{J}=\left\langle\mathbf{I}, w-g_{2}\right\rangle \subseteq \mathbb{F}_{q}[x, y, z, w]$
- Using lex order with $x>y>z>w$, J has a Gröbner Basis $w^{4}+w^{3}+w^{2}+w,(w-2) z+2 w^{3}+w^{2}, z^{2}-z+w$, $(w+1) y+z w-z-w, y z-2 y w-2 z^{2} w-2 z^{2}+2 z w+2 z$, $y^{2}+y z+z^{2}-z, x+y+z-1$

and the dimension of the solution space was 4 .

- Let $w=0$ then we obtain:

Example

- For g_{2} construct the ideal $\mathbf{J}=\left\langle\mathbf{I}, w-g_{2}\right\rangle \subseteq \mathbb{F}_{q}[x, y, z, w]$
- Using lex order with $x>y>z>w$, J has a Gröbner Basis $w^{4}+w^{3}+w^{2}+w,(w-2) z+2 w^{3}+w^{2}, z^{2}-z+w$, $(w+1) y+z w-z-w, y z-2 y w-2 z^{2} w-2 z^{2}+2 z w+2 z$, $y^{2}+y z+z^{2}-z, x+y+z-1$
- Note that $h=w^{4}+w^{3}+w^{2}+w$ has 4 roots: $w=0,-1,-2,2$, and the dimension of the solution space was 4 .
- Let $w=0$ then we obtain:

Example

- For g_{2} construct the ideal $\mathbf{J}=\left\langle\mathbf{I}, w-g_{2}\right\rangle \subseteq \mathbb{F}_{q}[x, y, z, w]$
- Using lex order with $x>y>z>w$, J has a Gröbner Basis $w^{4}+w^{3}+w^{2}+w,(w-2) z+2 w^{3}+w^{2}, z^{2}-z+w$, $(w+1) y+z w-z-w, y z-2 y w-2 z^{2} w-2 z^{2}+2 z w+2 z$, $y^{2}+y z+z^{2}-z, x+y+z-1$
- Note that $h=w^{4}+w^{3}+w^{2}+w$ has 4 roots: $w=0,-1,-2,2$, and the dimension of the solution space was 4.
- Let $w=0$ then we obtain:

$$
\begin{aligned}
& G_{0}=\left\{-2 z, z^{2}-z, y-z, y z+3 z^{2}+2 z\right. \\
& \left.y^{2}+y z+z^{2}-z, x+y+z-1\right\} \\
& Q_{1}=\left\langle G_{0}\right\rangle=\langle-2 z, y-z, x+y+z-1\rangle=\langle z, y, x-1\rangle
\end{aligned}
$$

Example

- Similarly we obtain:

$$
\begin{aligned}
Q_{2} & =\left\langle z+2, y^{2}-2 y+1, x+y+2\right\rangle \\
Q_{3} & =\langle z-2, y-1, x+2\rangle \\
Q_{4} & =\left\langle z^{2}-z+2, y+z+2 z+1, x-z+3\right\rangle
\end{aligned}
$$

- Each Q_{i} is primary and

- Thus we have our primary decomposition.

Example

- Similarly we obtain:

$$
\begin{aligned}
& Q_{2}=\left\langle z+2, y^{2}-2 y+1, x+y+2\right\rangle \\
& Q_{3}=\langle z-2, y-1, x+2\rangle \\
& Q_{4}=\left\langle z^{2}-z+2, y+z+2 z+1, x-z+3\right\rangle
\end{aligned}
$$

- Each Q_{i} is primary and $\mathbf{I}=Q_{1} \cap Q_{2} \cap Q_{3} \cap Q_{4}$
- Thus we have our primary decomposition.

Example

- Similarly we obtain:

$$
\begin{aligned}
Q_{2} & =\left\langle z+2, y^{2}-2 y+1, x+y+2\right\rangle \\
Q_{3} & =\langle z-2, y-1, x+2\rangle \\
Q_{4} & =\left\langle z^{2}-z+2, y+z+2 z+1, x-z+3\right\rangle
\end{aligned}
$$

- Each Q_{i} is primary and $\mathbf{I}=Q_{1} \cap Q_{2} \cap Q_{3} \cap Q_{4}$
- Thus we have our primary decomposition.

Example

Note that we used $g_{2}=z-z^{2}$ which had a component in its basis with 4 roots. Such a g is called separable.
If we had picked another of the g functions we might not have been so lucky. In that case, some of the Q_{i} 's will be primary and some will not. The ones that are not primary can be reduced and have this procedure applied to them again.

References

- Shuhong Gao, Daqing Wan and Mingsheng Wang, Primary decomposition of zero-dimensional ideals over finite fields, Mathematics of Computation, 78 (2009), 509-521.
- Shuhong Gao, Virginia M. Rodrigues and Jeffrey Stroomer, Grobner basis structure of finite sets of points, preprint, 2003.

