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Part I: Gröbner Basis Structure

Gröbner Basis Structure of Finite Sets of Points
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Definitions

def. Let I be an ideal in F[x1, . . . , xn], then the variety associated
with I is the set of common zeros for the polynomials in I.

V (I) =
{

P ∈ Fn
: f (P) = 0,∀f ∈ I

}
def. An ideal I is a zero-dimensional ideal if the associated variety
V (I) is a finite set.

def. The radical of an ideal I ⊆ R is the set

Rad(I) = {r ∈ R : rn ∈ I for some positive integer n}
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Definitions

Big Idea: If the Gröbner Basis for an ideal I has some “nice” structure
to it, then we can uncover information about V (I) and vice versa.
The structure that we seek is the ability to project down a dimension
on one of the coordinates.

Let P be the set of common zeros of I. (i.e. P = V (I))

Let π : Fn → Fn−1
be the projection map such that

π(a1, . . . , an−1, an) = (a1, . . . , an−1)

Let S = π(P) denote the projection of P.

def. The fibre of π in P at a point s ∈ S is π−1(s), the set of
points in P that project to s. This set is called the fibre of s.

def. The size of a fibre is its cardinality, and the fibre size of s is
the size of its fibre.
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Pictures
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Pictures
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How does the special structure help?

Does a Gröbner Basis for I tell the sizes of the fibres in P?

If I know a Gröbner Basis for I, can I easily find a Gröbner Basis
for subsets of S that are projections of different fibre sizes?
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Main Theorem

Let F be a perfect field, I be a zero-dimensional radical ideal in
F[x1, . . . , xn], and P be the set of zeros of I in Fn

. Assume the fibre
sizes in P are m1 > . . . > mr > 0. Let G be any minimal Gröbner
Basis for I under an elimination order for xn. View the elements of G
as polynomials in xn with coefficients in F[x1, . . . , xn−1]. Then the
following statements will hold:

The xn-degrees of the polynomials in G are exactly the fibre sizes
in P.

For 1 ≤ i ≤ r let Gi denote the set of leading coefficients of the
polynomials in G whose xn-degrees are < mi . Also, let S≤i denote
the set of points in S = π(P) that are projections of fibres of size
≥ mi . Then each Gi is a Gröbner Basis for S≤i .

Nate Black Gröbner Basis Structure and the GWW algorithm
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Example

Let G =
{
z2 − z , zy − z , x , y2 − y

}
be a Gröbner Basis

Note that the z-degrees of each polynomial are 2, 1, 0, 0
respectively

Thus if we project on the z-coordinate, the fibre sizes will be
2 > 1 > 0

Looking at the first element in G we see that z2 − z = 0 has only
two solutions: z = 0, 1

First, let z = 0 and project on the z-coordinate
G1 = {x , y2 − y}
Second, let z = 1 and project on the z-coordinate
G2 = {y − 1, x , y2 − y}
In either case x = 0, then for G1, y2 − y = 0 has two solutions:
y = 0, 1, while for G2, y − 1 = 0 forces y = 1.

We now have 3 solutions: {(0, 0, 0), (0, 1, 0), (0, 1, 1)}
Nate Black Gröbner Basis Structure and the GWW algorithm
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Pictures
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Pictures
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Part II: The GWW Algorithm

Primary Decomposition of Zero-Dimensional Ideals
Over Finite Fields
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Definitions

def. An ideal I ⊆ R is called primary if whenever xy ∈ I then
either x or yn is in I for some positive integer n.

def. The nth-Frobenius map sends every element x to xn. For
finite fields of order q the qth-Frobenius map fixes every element
in the field.

def. A primary decomposition of an ideal, I, is a set of ideals,
{Qi}, such that each Qi is primary and

I = Q1 ∩ Q2 ∩ . . . ∩ Qr

In general this decomposition is not unique, but the number of
elements, r , is.
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Outline

Let I ⊆ k[x1, x2, . . . , xn] be the ideal under consideration with k
containing Fq as a subfield.

Let R = k[x1, x2, . . . , xn]/I and G = {g ∈ R : g ≡ gq(modI)}.
Then G is an Fq linear subspace of R. (By the theorem proved in
the paper, the dimension will actually be r , where r is the number
of ideals in the primary decomposition.)

Let B be any linear basis for G over Fq.

Let C be the matrix that represents the qth-Frobenius map acting
on B. Then Bq = B · C .

If we represent g ∈ R as B(a1, . . . , ad)T , then gq ≡ g(modI) iff

(C − I )(a1, . . . , ad)T = 0

Nate Black Gröbner Basis Structure and the GWW algorithm
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Nate Black Gröbner Basis Structure and the GWW algorithm



GWW Algorithm 15 / 21

Outline

Let I ⊆ k[x1, x2, . . . , xn] be the ideal under consideration with k
containing Fq as a subfield.

Let R = k[x1, x2, . . . , xn]/I and G = {g ∈ R : g ≡ gq(modI)}.
Then G is an Fq linear subspace of R. (By the theorem proved in
the paper, the dimension will actually be r , where r is the number
of ideals in the primary decomposition.)

Let B be any linear basis for G over Fq.

Let C be the matrix that represents the qth-Frobenius map acting
on B. Then Bq = B · C .

If we represent g ∈ R as B(a1, . . . , ad)T , then gq ≡ g(modI) iff

(C − I )(a1, . . . , ad)T = 0
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Example

Let I = 〈y2 − xz , z2 − x2y , x + y + z − 1〉 ⊂ F5[x , y , z ]

Using lex order with x > y > z , I has a Gröbner Basis
G = [x + y + z − 1, y2 + 3y − 2z4 + z3 + 2z2 + z ,
yz + 2y + 2z4 − z3 − z2 − 2z , z5 − z4 + 3z3 − z2 + 2z ]

R = F5[x , y , z ]/I has a basis: B =
(
z4, z3, z2, z , y , 1

)

Nate Black Gröbner Basis Structure and the GWW algorithm



GWW Algorithm 16 / 21

Example

Let I = 〈y2 − xz , z2 − x2y , x + y + z − 1〉 ⊂ F5[x , y , z ]

Using lex order with x > y > z , I has a Gröbner Basis
G = [x + y + z − 1, y2 + 3y − 2z4 + z3 + 2z2 + z ,
yz + 2y + 2z4 − z3 − z2 − 2z , z5 − z4 + 3z3 − z2 + 2z ]

R = F5[x , y , z ]/I has a basis: B =
(
z4, z3, z2, z , y , 1

)
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G = [x + y + z − 1, y2 + 3y − 2z4 + z3 + 2z2 + z ,
yz + 2y + 2z4 − z3 − z2 − 2z , z5 − z4 + 3z3 − z2 + 2z ]

R = F5[x , y , z ]/I has a basis: B =
(
z4, z3, z2, z , y , 1

)
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C =



−2 −1 1 1 1 0
−1 −1 2 2 0 0
2 −1 2 1 0 0
−1 −2 2 −2 0 0
0 0 0 0 0 0
0 0 0 0 0 1


The solution space of C − I is given by:

(0, 0, 0, 0, 0, 1) ↔ g1 = 1,

(0, 0,−1, 1, 0, 0) ↔ g2 = z − z2,

(0, 1, 1, 0, 0, ) ↔ g3 = z2 + z3,

(−2, 1, 0, 0, 0, 0) ↔ g4 = z3 − 2z4,
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For g2 construct the ideal J = 〈I,w − g2〉 ⊆ Fq[x , y , z ,w ]

Using lex order with x > y > z > w , J has a Gröbner Basis
w4 + w3 + w2 + w , (w − 2)z + 2w3 + w2, z2 − z + w ,
(w + 1)y + zw − z − w , yz − 2yw − 2z2w − 2z2 + 2zw + 2z ,
y2 + yz + z2 − z , x + y + z − 1

Note that h = w4 + w3 + w2 + w has 4 roots: w = 0,−1,−2, 2,
and the dimension of the solution space was 4.

Let w = 0 then we obtain:
G0 = {−2z , z2 − z , y − z , yz + 3z2 + 2z ,
y2 + yz + z2 − z , x + y + z − 1}
Q1 = 〈G0〉 = 〈−2z , y − z , x + y + z − 1〉 = 〈z , y , x − 1〉
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Example

Similarly we obtain:
Q2 = 〈z + 2, y2 − 2y + 1, x + y + 2〉
Q3 = 〈z − 2, y − 1, x + 2〉
Q4 = 〈z2 − z + 2, y + z + 2z + 1, x − z + 3〉
Each Qi is primary and
I = Q1 ∩ Q2 ∩ Q3 ∩ Q4

Thus we have our primary decomposition.
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Nate Black Gröbner Basis Structure and the GWW algorithm



GWW Algorithm 19 / 21

Example

Similarly we obtain:
Q2 = 〈z + 2, y2 − 2y + 1, x + y + 2〉
Q3 = 〈z − 2, y − 1, x + 2〉
Q4 = 〈z2 − z + 2, y + z + 2z + 1, x − z + 3〉
Each Qi is primary and
I = Q1 ∩ Q2 ∩ Q3 ∩ Q4

Thus we have our primary decomposition.

Nate Black Gröbner Basis Structure and the GWW algorithm



GWW Algorithm 20 / 21

Example

Note that we used g2 = z − z2 which had a component in its basis
with 4 roots. Such a g is called separable.
If we had picked another of the g functions we might not have been so
lucky. In that case, some of the Qi ’s will be primary and some will not.
The ones that are not primary can be reduced and have this procedure
applied to them again.
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